martes, 8 de diciembre de 2009

¿ Qué es CNC?

CONTROL NUMÉRICO CN INTRODUCCIÓN

Actualmente existe un ambiente de grandes expectativas e incertidumbre. Mucho de esto se da por los rápidos cambios de la tecnología actual, pues estos no permiten asimilarla en forma adecuada de modo que es muy difícil sacar su mejor provecho. También surgen cambios rápidos en el orden económico y político los cuales en sociedades como la nuestra (países en desarrollo) inhiben el surgimiento de soluciones autóctonas o propias para nuestros problemas más fundamentales. Entre todos estos cambios uno de los de mayor influencia lo será sin duda el desarrollo de las nuevas políticas mundiales de mercados abiertos y globalización. Todo esto habla de una libre competencia y surge la necesidad de adecuar nuestras industrias a fin de que puedan satisfacer el reto de los próximos años. Una opción o alternativa frente a esto es la reconversión de las industrias introduciendo el elemento de la automatización. Sin embargo se debe hacerse en la forma más adecuada de modo que se pueda absorber gradualmente la nueva tecnología en un tiempo adecuado; todo esto sin olvidar los factores de rendimiento de la inversión y capacidad de producción. Uno de los elementos importantes dentro de este resurgir de la automatización son la Máquinas de Herramientas de Control Numérico Computarizado, las cuales brindan algunas ventajas adicionales. Desde los orígenes del control numérico todos los esfuerzos se han encaminado a incrementar la productividad, precisión, rapidez y flexibilidad de las máquinas-herramienta. Su uso ha permitido la mecanización de piezas muy complejas, especialmente en la industria aeronáutica, que difícilmente se hubieran podido fabricar de forma manual. La utilización de sistemas de control abiertos aportará considerables beneficios, no sólo a los fabricantes de control y fabricantes de máquina-herramienta, sino también al usuario final. Permitirá la integración de módulos propios, dando así a una empresa la posibilidad de implementar, por ejemplo, su sistema de programación específico tanto a pie de máquina como en el departamento de programación. Al basarse en estándares, la integración en un entorno CIM será fácil y económica. También se obtendrán una reducción del tiempo de desarrollo y un incremento de la flexibilidad en la adaptación de los controles a las demandas especiales de las máquinas-herramienta y células de producción. Finalmente, se reducirán los costes de desarrollo, adaptación, puesta en marcha, formación, documentación y mantenimiento. Las maquinas herramienta de control numérico configuran una tecnología de fabricación que de la mano de la microelectrónica, la automática y la informática industrial ha experimentado en los últimos años un desarrollo acelerado y una plena incorporación a los procesos productivos, desplazando progresivamente a las maquinas convencionales, su capacidad de trabajo automático y de integración de los distintos equipos entre si y con los sistemas de control, planificación y gestión de formación, hacen del control numérico (CN) la base de apoyo a unas tecnologías de fabricación: el COM.- fabricación flexible y el CIM fabricación integrado por computadora. FUNDAMENTOS VENTAJAS Y CLASIFICACIÓN Evolución y tendencias de los controles numéricos En primer lugar se realizará un breve resumen de la historia del control numérico desde sus orígenes. A continuación se analizarán las tendencias actuales, contemplando tanto aspectos hardware como software. En tercer lugar se presentarán las diferentes iniciativas (europeas, americanas y japonesas) en el campo de los controles numéricos abiertos. Finalmente se presentarán diferentes tipos de controles abiertos y, en particular, la futura familia de controles numéricos abiertos en la que Fagor Automation está trabajando actualmente. A continuación se mostrara una tabla donde nos muestra el desarrollo del control numérico. (1725) Máquinas de tejer construidas en Inglaterra, controladas por tarjetas perforadas. (1863) M. Forneaux- primer piano que tocó automáticamente. (1870-1890) Eli Whitney- desarrollo de plantillas y dispositivos. "Sistema norteamericano de manufactura de partes intercambiables. (1880) Introducción de una variedad de herramientas para el maquinado de metales. Comienzo del énfasis en la producción a gran escala. (1940) Introducción de los controles hidráulicos, neumáticos y electrónicos. Aumento del énfasis en el maquinado automático. (1945) Comienzo de la investigación y desarrollo del control numérico. Comienzo de los experimentos de producción a gran escala con control numérico. (1955) Las herramientas automatizadas comenzaron a aparecer en las plantas de producción para la Fuerza Aérea de producción de los Estados Unidos: (1956) Hay concentración en la investigación y el desarrollo del control numérico. (1960) Hasta la actualidad Se crean varios nuevos sistemas de control numérico. Se perfeccionaron las aplicaciones a la producción de una gama más grande de procedimientos de maquinado de metales. Se idearon aplicaciones a otras actividades diferentes del maquinado de metales. Se utilizaron insumos computarizados de control numérico. Se utilizan documentos computarizados de planeación gráficos por control numérico. Se han desarrollado procedimientos computarizados de trazo de curvas de nivel por control numérico, a bajo costo. Se han establecido centros de maquinado para utilización general. Dificultades actuales en el trabajo Entre los problemas industriales de estos países desarrollados podemos mencionar: Existe cada vez una mayor exigencia en la precisión. Los diseños son cada vez más complejos. La diversidad de productos hace necesario la tendencia a estructuras de producción más flexibles. Se tiende a incrementar los tiempos de inspección. Los costos de fabricación de moldes es mayor y se hace necesario minimizar errores. El tiempo de entrega de los productos tiende a ser cada vez más reducido. La formación de instructores es cada vez más difícil, pues se hace necesario personal cada vez más experimentado. El Ambiente de Trabajo. El entorno del ambiente industrial se encuentra frecuentemente con situaciones tales como: Escasez de mano de obra calificada. Producción masiva de múltiples modelos de un mismo producto. Ambiente de producción y taller poco atractivo. Estos aspectos son más fácil de encontrar en sociedades industriales, que en países subdesarrollados. Una solución para los problemas que aquejan hoy en día a la industria es utilizar una de las 5 formas automatizar los procesos. Los tipos de automatización son: Control Automático de Procesos El Procesamiento Electrónico de Datos La Automatización Fija El Control Numérico Computarizado La Automatización Flexible. El Control Automático de Procesos, se refiere usualmente al manejo de procesos caracterizados de diversos tipos de cambios (generalmente químicos y físicos); un ejemplo de esto lo podría ser el proceso de refinación de petróleo. El Proceso Electrónico de Datos frecuentemente es relacionado con los sistemas de información, centros de computo, etc. Sin embargo en la actualidad también se considera dentro de esto la obtención, análisis y registros de datos a través de interfases y computadores. La Automatización Fija, es aquella asociada al empleo de sistemas lógicos tales como: los sistemas de relevadores y compuertas lógicas; sin embargo estos sistemas se han ido flexibilizando al introducir algunos elementos de programación como en el caso de los (PLC’S) O Controladores Lógicos Programables. Un mayor nivel de flexibilidad lo poseen las máquinas de control numérico computarizado. Este tipo de control se ha aplicado con éxito a Máquinas de Herramientas de Control Numérico (MHCN). Entre las MHCN podemos mencionar: Frezadoras CNC. Tornos CNC. Máquinas de Electroerosionado Máquinas de Corte por Hilo, etc. El mayor grado de flexibilidad en cuanto a automatización se refiere es el de los Robots industriales que en forma más genérica se les denomina como "Celdas de Manufactura Flexible". Maquinas Herramientas de Control Numérico MHCN Las Maquinas Herramientas de Control Numérico (MHCN), constituyen una modalidad de automatización flexible mas utilizada; son maquinas herramientas programadas para fabricar lotes de pequeño y medio tamaño de piezas de formas complicadas; los programas de software sustituyen a los especialistas que controlaban convencionalmente los cambios de las maquinas y constituciones que incluye las tareas y sus velocidades así como algunas variables de control adaptativo para comprobar aspectos tales como temperatura, vibración, control adaptativo, condición del material, desgaste de las herramientas, etc., que permiten proceder a los reajustes necesarios. Estas maquinas pueden encontrarse en forma asilada, en cuyo caso se habla de un modulo, o bien interconectadas entre si por medio de algún tipo de mecanismo automático para la carga y descarga del trabajo en curso, en cuyo caso se hablaría de una célula de fabricación. En ocasiones las maquinas están dispuestas en forma semicircular para que un robot pueda encargarse de manejar los materiales, mientras que en otros la configuración es lineal.

sábado, 7 de noviembre de 2009

¿COMO SE HACEN LOS RODAMIENTOS?

Para las bolillas se parte de varillas del material, sin tratar. Se cortan y se forman las bolillas en tornos especiales o por estampación.
Luego se alisan entre dos platos paralelos girando en sentidos diferentes, se rectifican y se les da temple en hornos.
Vuelven a ser rectificadas y pulidas con recortes de cuero en tambores giratorios.
Se clasifican en ranuras calibradas y se verifica la esfericidad haciéndolas rodar por plano inclinado (si el CG no coincide con el centro geométrico, no va por la linea de máxima pendiente y se desvía.

¿POR QUE EL HIELO FLOTA EN EL AGUA?

¿POR QUÉ EL HIELO FLOTA SOBRE EL AGUA?


La estructura del hielo, forma un retículo que ocupa más espacio y es menos denso que el agua líquida. Cuando el agua se enfría, se contrae su volumen, como sucede en todos los cuerpos, pero al alcanzar los 4ºC cesa la contracción y su estructura se dilata hasta transformarse en hielo en el punto de congelación.



Por eso el hielo es menos denso que el agua y flota sobre ella.

Gracias a esta anomalía del agua, los lagos, ríos y mares, comienzan a congelarse desde la superficie hacia abajo, y esta costra de hielo superficial sirve de abrigo a los seres que viven, pues aunque la temperatura ambiental sea extremadamente baja (-50 0 -60º C), el agua de la superficie transformada en hielo mantiene constante su temperatura en 0ºC.



Y el agua del fondo queda protegida térmicamente del exterior, y puede alcanzar los 4º o 5ºC, que son suficientes para la supervivencia de ciertas especies. En esta propiedad se basan los esquimales para construir sus casa de hielo (iglúes).

domingo, 27 de septiembre de 2009

TURBOMAQUINAS

Partes de una turbomáquina [editar]



Una turbina Kaplan, ésta es una turbomáquina motora hidráulica de fujo axial. Véase en rojo las partes rotativas entre las que se encuentra un Generador eléctrico en este caso.
Una turbomáquina consta de diversas partes y accesorios dependiendo de su tipo, aplicación y diseño. Por ejemplo un ventilador puede ser una turbomáquina que sólo conste de un árbol, motor, rotor y soporte, mientras que un compresor centrífugo o una bomba semi-axial puede tener muchas partes que incluso no comparta con las demás turbomáquinas existentes. Sin embargo, la mayoría de las turbomáquinas comparten el hecho de tener partes estáticas y rotativas; y dentro de estos conjuntos pueden haber diversos elementos los cuales muchas turbomáquinas comparten y una enumeración competente puede ser la siguiente:
Partes rotativas [editar]
Rotor [editar]
El rotor es el corazón de toda turbomáquina y el lugar donde aviene el intercambio energético con el fluido. Está constituido por un disco que funciona como soporte a palas, también llamadas álabes, o cucharas en el caso de las turbinas Pelton. La geometría con la cual se realizan los álabes es fundamental para permitir el intercambio energético con el fluido; sobre éstas reposa parte importante del rendimiento global de toda la turbomáquina y el tipo de cambio energético generado (si la energía será transferida por cambio de presión o velocidad). Los tipos de rotores pueden ser axiales, radiales, mixtos o tangenciales, para su fácil identificación y distinción se hace uso de representaciones por proyección específicas.

Rotor Radial.

Rotor Axial.

Eje o árbol [editar]
Artículo principal: Árbol de transmisión
Tiene la doble función de trasmitir potencia (desde o hacia el rotor) y ser el soporte sobre el que yace el rotor. En el caso de las turbomáquinas generadoras éste siempre está conectado a alguna clase de motor, como puede ser un motor eléctrico, o incluso una turbina como es común en los turboreactores, muchas veces entre el árbol y el motor que mueve a la turbomáquina se encuentra algún sistema de transmisión mecánica, como puede ser un embrague o una caja reductora. En el caso de las turbomáquinas generadoras, es frecuente encontrar un generador eléctrico al otro extremo del árbol, o incluso hay árboles largos que soportan al rotor en el medio y en un extremo se encuentra una turbomáquina generadora y al otro un generador.
Partes estáticas [editar]
Al conjunto de todas las partes estáticas de la turbomáquina (y en otras máquinas también) se le suele denominar estator.
Entradas y Salidas [editar]
Estas partes son comunes en todas las turbomáquinas, pero pueden variar de forma y geometría entre todas. Existen turbomáquinas generadoras de doble admisión, es decir, que tienen dos entradas diferenciadas y una salida única de fluido. Estas partes pueden constar de una brida en el caso de la mayoría de las bombas y compresores, pero en las turbinas hidráulicas grandes, sólo son grandes tuberías y la salida muchas veces tiene forma de difusor. En los molinos de viento, por ejemplo, la entrada y la salida sólo pueden ser superficies imaginarias antes y después del rotor.
Álabes directores [editar]
También llamados palas directoras, son álabes fijos al estator, por los cuales pasa el fluido de trabajo antes o después de pasar al rotor a realizar el intercambio energético. Muchas turbomáquinas carecen de ellos, pero en aquellas donde si figuran éstos son de vital importancia. En las turbomáquinas motoras se encargan de dirigir el fluido en un cierto ángulo, así como acelerarlo para optimizar el funcionamiento de la máquina. En las turbomáquinas generadoras se encuentran a la salida del rotor. Los álabes directores también pueden llegar a funcionar como reguladores de flujo, abriéndose o cerrándose a manera de válvula para regular el caudal que entra a la máquina.
Cojinetes, rodamientos o rolineras [editar]
Son elementos de máquina que permiten el movimiento del eje mientras lo mantienen solidario a la máquina, pueden variar de tipos y tamaños entre todas las turbomáquinas.
Sellos [editar]
Artículo principal: sello (ingeniería)
Son dispositivos que impiden la salida del fluido de la turbomáquina. Cumplen una función crítica principalmente en los acoplamientos móviles como en los rodamientos. Pueden variar de tipos y ubicación dentro una turbomáquina a otra.
Intercambio de energía entre el fluido y la turbomáquina [editar]

Cuando el fluido de trabajo pasa a través de la turbomáquina la naturaleza del intercambio de energía es muy compleja debido a la cantidad de procesos termodinámicos irreversibles que ocurren, además de la naturaleza complicada y muchas veces caótica del movimiento del fluido en el seno del rotor. Para obtener una primera consideración de este intercambio energético se deben hacer consideraciones teóricas sobre la naturaleza del fluido y su comportamiento a través del roror, esto con la finalidad de simplificar el modelado matemático del fluido en su paso por el rotor.
El fluido que pasa por el rotor es un fluido potencial.
Todas las lineas de corriente tienen la misma forma que cada uno de los álabes o paletas del rotor, esto sería equivalente a decir que el rotor tiene un "infinito" número de álabes.
Las características del régimen de flujo no varían en el tiempo, es decir, el flujo se encuentra completamente desarrollado, o en otras palabras, nos encontramos en régimen permanente.
Una vez declaradas estas simplificaciones podemos aludir a las leyes de conservación de la mecánica y a la ecuación de transporte de Reynolds de manera sencilla; pero dependiendo de la trayectoria del flujo de fluido a través del rotor las formulaciones serán distintas.

Triángulo de velocidades [editar]
En el lenguaje de las turbomáquinas se habla de triángulo de velocidades para referirse al triángulo formado por tres vectores los cuales son:


Triángulo de velocidades.
La velocidad absoluta del fluido
La velocidad relativa del fluido respecto al rotor
La velocidad lineal del rotor
Estos tres vectores forman un triángulo ya que la suma en un mismo punto es igual a en ese punto por leyes del movimiento relativo.
El ángulo entre los vectores y es denotado α y el ángulo entre los vectores y es denotado β. Esta nomenclatura será utilizada a través de todo este artículo y es norma DIN 1331.
Turbomáquinas Generadoras [editar]

TURBOMAQUINAS RADIALES

Turbomáquinas Generadoras [editar]
Turbomáquinas radiales [editar]


Cinemática de una turbomáquina radial generadora.
Conservación de la cantidad de movimiento lineal:
Las fuerzas que actúan sobre el volumen de control son debidas a las presiones en la entrada y en la salida del rotor, si éstas se consideran iguales en toda la salida e iguales en toda la entrada, entonces las fuerzas lineales quedan anuladas por cuestión de simetría.
Conservación de la cantidad de movimiento angular:
En este caso se define la propiedad extensiva momento angular como , y su análoga propiedad intensiva será , donde es el campo vectorial de velocidades y un radio vector desde la referencia hasta cada diferencial de masa dm.
La ecuación de transporte de reynolds relaciona el cambio de momento angular en el tiempo, que por leyes de la mecánica es igual a la suma de momentos aplicados, con su análoga propiedad intensiva que definimos arriba de la siguiente manera:

Como se supone que la situación es de flujo estable, ningún término depende del tiempo, por lo cual el primer sumando del lado derecho de la ecuación se hace cero. El siguiente sumando es una integral que se evalúa en toda la superficie de control y se supondrá que el rotor es de una turbomáquina generadora:

el vector puede escribirse en coordenadas cilíndricas como lo que permite llegar a la siguiente expresión:

Por las suposiciones anteriores se puede considerar a la velocidad independiente de θ y de z ya que todas las líneas de corriente son iguales; esto permite evaluar estas integrales así:

Donde b es el grueso del rotor. Como el régimen es estable se cumple que la misma masa que entra sale, es decir . Esta integral representa el producto de la densidad del fluido por el área en la que evaluamos la integral por la componente de la velocidad normal a esta área, por lo tanto si es el flujo másico que circula a través del rotor se puede escribir:

Donde es la totalidad de los momentos aplicados sobre el volumen de control, y se resumen en el torque aplicado por el rotor para mantener el flujo de fluido. Para obtener obtener datos energéticos en vez de mecánicos recurrimos a la definición de potencia N = Mω, donde ω es la velocidad angular y podemos reescribir la anterior relación mecánica como una relación energética:

Esta ecuación es conocida como la ecuación general de las turbomáquinas y fue hallada por Euler en 1754.

TURBOMAQUINAS AXIALES

Turbomáquinas axiales [editar]
En la formulación euleriana de las turbomáquinas axiales se supone, además de las simplificaciones teóricas declaradas más arriba, que la altura de las palas es muy pequeña en relación al diámetro del rotor. Esta suposición implica necesariamente que la diferencia de la velocidad periférica a lo largo de las palas es muy pequeña, así haremos un análisis del intercambio de cantidad de movimiento de una proyección cilíndrica imponiendo que la velocidad periférica es la misma a lo largo de cada uno de los álabes.


Triángulos de velocidades
En vez de utilizar la ecuación de transporte de reynolds, que sería completamente válida y concluiría exactamente lo mismo, haremos un análisis de fuerzas más sencillo para dar otra perspectiva al lector. A efectos del intercambio de energía con el rotor, el cambio de cantidad de movimiento en dirección de es el que determinan la fuerza tangenciales(Ftan) sobre la periferia del rotor (véase figura anexa), es decir:

Para determinar la potencia suministrada por la máquina al fluido (recuérdese que estamos hablando de turbomáquinas motoras), multiplicamos a ambos lados por el radio del rotorr y por la velocidad angular del mismo ω, de esta forma, en el lado derecho de la igualdad anterior se tendrá la velocidad periférica:

Turbomáquinas Motoras [editar]
El desarrollo hecho arriba para determinar la transferencia de energía fue hecho, como ya dijimos, para turbomáquinas motoras, es decir, la energía del fluido de trabajo aumenta luego de pasar por el rotor de la turbomáquina. Para el caso de turbomáquinas generadoras, en las cuales el fluido de trabajo le cede energía a la máquina éstas ecuaciones siguen siendo válidas, pero el signo de la potencia será negativo. Para evitar esto, es costumbre en el estudio y práctica de las turbomáquinas cambiar el signo de la ecuación invirtiendo los términos algebraicos de lado derecho de la igualdad de Euler:
Turbomáquinas generadoras radiales:

Turbomáquinas generadoras axiales:

En todo caso, para turbomáquinas motoras y generadoras, se puede observar que la ecuación para las turbomáquinas radiales es completamente general

ECUACION GENERAL DE TURBOMAQUINAS

Consecuencias de la ecuación general de las turbomáquinas [editar]

De esta ecuación fundamental se desprenden muchas interpretaciones del fenómeno de intercambio energético que se desarrolla en el rotor, el cual hemos evidenciado estar determinado por la cinemática del fluido en el rodete. De ahora en adelante, en este parágrafo nos referiremos a turbomáquinas generadoras y dejamos al lector la extrapolación de los conceptos a las turbomáquinas motoras.

En primer lugar, el concepto de triángulo de velocidades enunciado más arriba, permite reescribir la ecuación de Euler:

L = [u2c2cos(α2) − u1c1cos(α1)]

Donde L se conoce como labor o trabajo por unidad de masa que pasa al fluido, también conocido como trabajo específico. Luego, si aplicamos el teorema del coseno al triangulo de velocidades obtendremos la siguiente expresión.

 w^2=c^2+u^2-2c u \cdot cos(\alpha)

 c u \cdot cos(\alpha) = \frac{c^2}{2}+\frac{u^2}{2}-\frac{w^2}{2}

Si sustituimos en la ecuación general obtendremos una expresión del trabajo específico únicamente en función de los cambios de velocidades al cuadrado, es decir formas de energía cinética:

 L=\frac{{c_2}^2-{c_1}^2}{2}+\frac{{u_2}^2-{u_1}^2}{2}+\frac{{w_1}^2-{w_2}^2}{2}

Turboreactor Rolls Royce, Obsérvese la admisión de aire a la izquierda, el fluido sale por los extremos del rotor hacía la cámara de combustión.

De los tres términos de esta ecuación, el primero es conocido como componente dinámico, y es el cambio de energía cinética específica sufrido por el fluido en el rotor. Los otros dos términos restantes reciben el nombre de componente estático, y para encontrar su significado se necesita recurrir a un balance entre la energía del fluido y el trabajo entregado por el rotor:

\overbrace{h_2 - h_1}^{\mbox{cambio de entalpia}} + \underbrace{\frac{{c_2}^2}{2} - \frac{{c_1}^2}{2}}_{\mbox{cambio de energia cinética}} = \overbrace{\frac{{c_2}^2-{c_1}^2}{2}}^{\mbox{componente dinamica}}+\underbrace{\frac{{u_2}^2-{u_1}^2}{2}+\frac{{w_1}^2-{w_2}^2}{2}}_{\mbox{componente estatica}}

Véase que en el cambio de energía del fluido no se aparece la energía potencial gravitatoria: efectivamente, los cambios de cota en el rodete son ínfimos en comparación con los demás cambios energéticos, por lo cual este término se desprecia. Además, esta ecuación es independiente del tipo de fluido que pasa por la turbomáquina, si éste fuese incompresible el cambio entálpico sería igual al cambio de presión únicamente.

La expresión anterior revela, que la componente estática de la energía suministrada al fluido por la turbomáquina, es equivalente al cambio entálpico del fluido en su paso por el rotor, y este cambio entálpico es proporcional a un cambio de presión. Es decir, existen dos formas fundamentales en que una turbomáquina puede entregar energía a un fluido, en forma de energía cinética y en forma de presión. Es importantísimo notar que todo cambio de presión implica un cambio de entalpía.

L = \overbrace{\frac{{c_2}^2-{c_1}^2}{2}}^{\mbox{cambio de energía cinética}}+\underbrace{\frac{{u_2}^2-{u_1}^2}{2}+\frac{{w_1}^2-{w_2}^2}{2}}_{\mbox{cambio de presion}}

Consideraciones posteriores sobre esta fórmula arrojan pistas sobre qué forma debe tener la corriente de fluido en el rotor para maximizar el trabajo euleriano que se entrega al fluido, y una obvia es minimizar todos los términos que tengan un signo menos. De hecho, casi todas las turbomáquinas generadoras radiales son centrífugas y todas las turbomáquinas motoras radiales son centrípetas, así la velocidad periférica de entrada y salida se minimiza correspondientemente.

Grado de Reacción [editar]

La idea de que la transferencia de energía entre el fluido y el rodete se realiza bajo forma de energía cinética y de energía de flujo (el términopv, o también el cambio de presión, lo que implica un cambio de entalpía) lleva a la definición de grado de reacción, que es la fracción de energía total entregada al fluido que es dada en forma de presión:

R=\frac{\mbox{energia entregada en forma de presion}}{\mbox{energía total entregada}}

La magnitud física presión (fuerza por unidad de área) no tiene un significado energético directo, en cambio ésta está íntimamente ligada a la entalpía, la cual si tiene un grandísimo significado energético. Por esta razón en el lenguaje de las turbomáquinas es frecuente hablar de cambios de presión para referirse a cambios de entalpía o viceversa. Más aún, si la energía interna de un fluido varía poco en su paso por el rotor, el cambio de entalpía será proporcional al cambio de presión, y así es posible escribir otra definición de grado de reacción:

R=\frac{\mbox{energia entregada en forma de entalpía}}{\mbox{energía total entregada}}

y por las expresiones arriba mencionadas:

R=\frac{\frac{{u_2}^2-{u_1}^2}{2}+\frac{{w_1}^2-{w_2}^2}{2}}{\frac{{c_2}^2-{c_1}^2}{2}+\frac{{u_2}^2-{u_1}^2}{2}+\frac{{w_1}^2-{w_2}^2}{2}}

Limitaciones de la teoría euleriana [editar]

La descripción dada arriba del intercambio energético dado en el paso del fluido de trabajo por el seno del rodete de la turbomáquina se conoce como teoría euleriana. Esta teoría resulta satisfactoria en muchos casos, en los cuales son válidas la suposiciones efectuadas para concluir la ecuación fundamental de las turbomáquinas. Por otro lado cuando estas suposiciones no son verificadas no es posible obtener una descripción satisfactoria a partir de la teoría euleriana, y en cada caso se deben tomar las medidas competentes para realizar un diseño correcto.

Álabes largos [editar]

Tal como ocurre en las etapas de baja presión dentro de las turbinas de vapor, en muchos casos, las palas de una turbomáquina axial pueden llegar a sar tan largas que exigen un análisis tridimencional completo del intercambio de cantidad de movimiento.

Álabes muy distanciados entre ellos en relación al diámetro del rotor [editar]

Si los álabes de una turbomáquina axial están muy distanciados, se pierde el efecto de "canal" que permite la supocición de tener un "número infinito de álabes", entonces las fuerzas intercambiadas entre el fluido y el rotor deben ser estudiadas desde la perspectiva de lateoría alar.

Rendimiento de las Turbomáquinas [editar]

En las turbomáquinas el concepto de rendimiento es de suma importacia. El rendimiento o eficiencia, puede verse como la razón existente entre los beneficios que pueden obtenerse idealmente de una máquina y aquellos que son obtenidos en la realidad. En otras palabras el rendimiento total de una turbomáquina se define como la razón entre la potencia restituida y la potencia absorbida:

\eta_{total}=\frac{\mbox{potencia restituida}}{\mbox{potencia absorbida}}

En las turbomáquinas motoras la potencia absorbida es toda aquella entregada por el fluido de trabajo en su paso por la máquina, y la potencia restituida es aquella que se encuentra en el eje del rotor. Al contrario ocurre en las turbomáquinas generadoras, ya que la potencia absorbida se encuentra en el eje del rotor, y la energía restituida es aquella que es entregada efectivamente al fluido de trabajo.

El discurso sobre el rendimiento utiliza ampliamente los conceptos de la termodinámica. La primera ley de la termodinámica nos indica que la potencia restituida jamás podrá ser mayor a la potencia absorbida, ya que esto implicaría la creación espontánea de energía. La segunda ley de la termodinámica nos dice que la potencia absorbida siempre será mayor que la potencia restituida, ya que la energía se suministra al fluido en un número finito de etapas (es un proceso irreversible). De esta forma podemos afirmar que

ηtotal <>

De esta manera, por ejemplo, para que un compresor axial entregue una cantidad Eentregada (energía restituida por la máquina) de energía a un fluido, este deberá absorber una cantidad de energía Eabsorbida definitivamente mayor a la entregada efectivamente al fluido de trabajo. La diferencia entre la energía absorbida y la energía restituida se conoce con el nombre de pérdidas:

EabsorbidaEentregada = Eperdida

Podemos escribir la misma relación para la potencia derivando respecto al tiempo:

NabsorbidaNentregada = Nperdida

La potencia perdida es aquella que resulta invertida en otros fenómenos distintos a aquellos deseados para los fines de la turbomáquina, que es entregar energía útil al fluido. Así la potencia perdida resulta en el calentamiento del fluido, vencer las fuerzas viscosas dentro del fluido, etc.. Para simplificar el estudio de la eficiencia o rendimiento se clasifican diversos tipos de rendimiento, cada uno asociado a un fenómeno distinto de pérdida de energía.

TURBOMAQUINARIA (3)

Estudio Adimensional de las Turbomáquinas [editar]

Más arriba hemos dado luces acerca de la complejidad de la dinámica del fluido de trabajo en su paso por la turbomáquina, de hecho las ecuaciones que predicen el movimiento del fluido son de tal complejidad que aún no se conoce una solución general, sino soluciones particulares que requieran grandes simplificaciones, que sin embargo aportan mucha información sobre el verdadero comportamiento del fluido. A su vez, la construcción comercial de turbomáquinas ya había empezado antes de que éstas ecuaciones se conocieran, o fueran difundidas en la comunidad científica e ingenierística, por lo cual los constructores de turbomáquinas se vieron obligados en buscar un método práctico de modelar estas máquinas. Un método obvio es la construcción de modelos, y la correlación entre modelos está determinada por la teoría de la similitud y el análisis dimensional.

La naturaleza experimental de la construcción de máquinas lleva a la construcción de modelos, luego la correlación entre los modelos y su equivalente real está determinado por los modelos teóricos ya mencionados, especialmente a través del Teorema de Pi-Buckingham.

Más aún, Baljie encontró que si dos máquinas símiles tienen el mismo rendimiento, entonces cada tipo de turbomáquina tiene un lugar "adimencional" de máximo rendimiento1 .

Bibliografía [editar]

  • MATAIX, Claudio. Turbomáquinas Hidráulicas. Editorial ICAI.
  • DIXON, S. L.. Fluid Mechanics and Thermodynamics of Turbomachinery. Editorial Butterworth Heinemann.
  • SCIUBBA, Enrico. Lezioni di Turbomacchine. Editorial Editrice Universitaria di Roma.

Referencias [editar]

Véase también [editar]

TURBOMAQUINARIA (2)

Clasificación [editar]

Las turbomáquinas pueden clasificarse de acuerdo a varios criterios como funcionamiento, composición o sentido de flujo de la energía.

De acuerdo con el sentido del flujo de energía [editar]

  • Motoras: la energía es entregada por el fluido a la máquina, y esta entrega trabajo mecánico. La mayoría de las turbomáquinas motoras son llamadas "turbinas", pero dentro de este género también entran los molinos de viento. Posteriormente la energía mecánica puede ser transformada en otro tipo de energía, como la energía eléctrica en el caso de las turbinas eléctricas.
  • Generadoras: la energía es entregada por la máquina al fluido, y el trabajo se obtiene de este. En este género entran las bombas, sopladores, turbocompresores, ventiladores, y otros.

De acuerdo con la forma que presenta el fluido proyectado a través del rotor [editar]

Turbina Pelton, ésta es una turbomáquina transversal de admisión parcial.
  • Radial: Si la trayectoria que sigue el fluido es principalmente normal al eje de rotación (centrífugas o centrípetas según la dirección de movimiento).
  • Axial: Cuando la trayectoria del fluido es fundamentalmente paralelo al eje de rotación.
  • Diagonal: Flujo diagonal al eje de rotación.

De acuerdo con el tipo de fluido que manejan [editar]

  • Térmicas: Cuando el cambio en la densidad del fluido es significativo dentro de la máquina, como en compresores.
  • Hidráulicas: Cuando el cambio en la densidad del fluido no es significativo dentro de la máquina, como en bombas o ventiladores.

De acuerdo con el cambio de presión en el rotor [editar]

  • Acción: no existe un cambio de presión en el paso del fluido por el rotor.
  • Reacción: existe un cambio de presión en el paso del fluido por el rotor.

De acuerdo con el tipo de admisión [editar]

  • Total: todo el rotor es tocado por el fluido de trabajo.
  • Parcial: no todo el rotor es tocado por el fluido de trabajo.

TURBOMAQUINARIA (1)

Turbomáquina

Ventilador de escritorio Westinghouse antiguo, fácilmente se puede identificar que es una turbomáquina, obsérvese que intercambia energía con el aire que impulsa y que su parte principal es una rueda con palas.
Esquema de un "turbofan", un motor que combina diversos tipos de turbomáquinas térmicas

Una turbomáquina es una máquina cuyo elemento principal es un rodete (rotor) a través del cual pasa un fluido de forma continua, cambiando éste su cantidad de movimiento por acción de la máquina, dándose así una transferencia de energía entre la máquina y el fluido, la cual puede ser en sentido máquina-fluido o fluido-máquina.

Las turbomáquinas se diferencian de otras máquinas térmicas en el hecho de que funcionan de manera continua y no discreta, como es el caso de los compresores de émbolo, las bombas de vapor a pistón o los populares motores de pistón, las cuales son máquinas de desplazamiento volumétrico o positivo. A semejanza de otras máquinas térmicas, son transformadoras de energía, lo cual es una característica fundamental, entregándole energía mecánica al fluido de trabajo convirtiéndola en presión (energía potencial), energía térmica o energía cinética del fluido, pudiendo ser este intercambio en sentido contrario.

Bajo muchas formas las turbomáquinas están presentes en nuestra vida cotidiana, desde los sencillos ventiladores y las bombas centrífugas que son de uso común, hasta las grandes turbinas hidráulicas de las centrales hidroeléctricas y las turbinas de vapor o a gas de las centrales térmicas son turbomáquinas. Es importante destacar que las turbomáquinas son fundamentales en la conversión electromecánica de energía, es decir, la generación eléctrica. Es este hecho el cual convierte a las turbomáquinas en un objeto de gran importancia dentro de la ingeniería mecánica, la cual dedica mucho a su estudio y proyección, e igualmente, pero en menor medida, la ingeniería civil.

Contenido

[ocultar]