El motor de corriente continua es una máquina que convierte la energía eléctrica en mecánica, principalmente mediante el movimiento rotatorio. En la actualidad existen nuevas aplicaciones con motores eléctricos que no producen movimiento rotatorio, sino que con algunas modificaciones, ejercen tracción sobre un riel. Estos motores se conocen como motores lineales.
Esta máquina de corriente continua es una de las más versátiles en la industria. Su fácil control de posición, par y velocidad la han convertido en una de las mejores opciones en aplicaciones de control y automatización de procesos. Pero con la llegada de la electrónica su uso ha disminuido en gran medida, pues los motores de corriente alterna, del tipo asíncrono, pueden ser controlados de igual forma a precios más accesibles para el consumidor medio de la industria. A pesar de esto los motores de corriente continua se siguen utilizando en muchas aplicaciones de potencia (trenes y tranvías) o de precisión (máquinas, micro motores, etc.)
La principal característica del motor de corriente continua es la posibilidad de regular la velocidad desde vacío a plena carga.
Una máquina de corriente continua (generador o motor) se compone principalmente de dos partes, un estator que da soporte mecánico al aparato y tiene un hueco en el centro generalmente de forma cilíndrica. En el estator además se encuentran los polos, que pueden ser de imanes permanentes o devanados con hilo de cobre sobre núcleo de hierro. El rotor es generalmente de forma cilíndrica, también devanado y con núcleo, al que llega la corriente mediante dos escobillas.
También se construyen motores de CC con el rotor de imanes permanentes para aplicaciones especiales.
Principio de funcionamiento [editar]
Según la segunda Ley de Lorentz, un conductor por el que pasa una corriente eléctrica que causa un campo magnético a su alrededor tiende a ser expulsado si se le quiere introducir en otro campo magnético.así que las fuerzas magneticas quedan rechazadas por las bobinas del motor haciendo que el rotor del motor gire.
F: Fuerza en newtons
I: Intensidad que recorre el conductor en amperios
l: Longitud del conductor en metros lineales
B: Inducción en teslas
Vale la pena agregar en el caso de las direcciones de la inducción magnética , la fuerza en la que se moverá el conductor como también el sentido de circulación de la corriente, se pueden definir con la Regla de la Mano Derecha de Fleming.
Fuerza contraelectromotriz inducida en un motor [editar]
Es la tensión que se crea en los conductores de un motor como consecuencia del corte de las líneas de fuerza, es el efecto generador
La polaridad de la tensión en los generadores es inversa a la aplicada en bornes del motor.
Las fuertes puntas de corriente de un motor en el arranque son debidas a que con máquina parada no hay fuerza contraelectromotriz y el bobinado se comporta como una resistencia pura del circuito.
Número de escobillas [editar]
Las escobillas deben poner en cortocircuito todas las bobinas situadas en la zona neutra. Si la máquina tiene dos polos, tenemos también dos zonas neutras En consecuencia, el número total de escobillas ha de ser igual al número de polos de la máquina.
En cuanto a su posición, será coincidente con las líneas neutras de los polos.
Sentido de giro [editar]
El sentido de giro de un motor de corriente continua depende del sentido relativo de las corrientes circulantes por los devanados inductor e inducido.
La inversión del sentido de giro del motor de corriente continua se consigue invirtiendo el sentido del campo magnético o de la corriente del inducido.
Si se permuta la polaridad en ambos bobinados, el eje del motor gira en el mismo sentido.
Los cambios de polaridad de los bobinados, tanto en el inductor como en el inducido se realizarán en la caja de bornes de la máquina.
Reversibilidad [editar]
Los motores y los generadores de corriente continua están constituidos esencialmente por los mismos elementos, diferenciándose únicamente en la forma de utilización.
Por reversibilidad entre el motor y el generador se entiende que si se hace girar al rotor, se produce en el devanado inducido una fuerza electromotriz capaz de transformarse en energía en el circuito de carga.
En cambio, si se aplica una tensión continua al devanado inducido del generador a través del colector de delgas, el comportamiento de la máquina ahora es de motor, capaz de transformar la fuerza contraelectromotriz en energía mecánica.
En ambos casos el inducido está sometido a la acción del campo inductor principal.